Publications
-
Seroussi, H. et al (2024): Evolution of the Antarctic Ice Sheet over the next three centuries from an ISMIP6 model ensemble. Earth’s Future, 12, https://doi.org/10.1029/2024EF004561.
-
Wunderling, N. et al. (2024): Climate tipping point interactions and cascades: a review, Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024
-
Hanna, E. et al. (2024): Short- and long-term variability of the Antarctic and Greenland ice sheets, Nature Reviews Earth & Environment, 5, 193-210, https://doi.org/10.1038/s43017-023-00509-7
- Bradley, A.T. et al. (2024): A framework for estimating the anthropogenic part of Antarctica’s sea level contribution in a synthetic setting, Commun Earth Environ 5, 121, https://doi.org/10.1038/s43247-024-01287-w
- Teske, V., Timmermann, R. & Semmler, T. (2024): Subsurface warming in the Antarctica’s Weddell Sea can be avoided by reaching the 2∘C warming target. Commun Earth Environ 5, 93. DOI. doi.org/10.1038/s43247-024-01238-5
- Nicola, L., Notz, D., and Winkelmann, R. (2023): Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?, The Cryosphere, 17, 2563–2583, https://doi.org/10.5194/tc-17-2563-2023
- Reed, B., Green, J.A.M., Jenkins, A. et al. (2023): Recent irreversible retreat phase of Pine Island Glacier, Nature Climate Change, DOI: doi.org/10.1038/s41558-023-01887-y
- Mathiot, P. and Jourdain, N. C. (2023): Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario, Ocean Science, DOI: doi.org/10.5194/os-19-1595-2023
- Sybren S. Drijfhout, et al. (2023): An Amundsen Sea source of decadal temperature changes on the Antarctic continental shelf, Ocean Dynamics, DOI: doi.org/10.1007/s10236-023-01587-3
- Haid, V., et al. (2023): On the drivers of regime shifts in the Antarctic marginal seas, exemplified by the Weddell Sea, Ocean Science, DOI: doi.org/10.5194/os-19-1529-2023
- Garbe, J., et al. (2023): The evolution of future Antarctic surface melt using PISM-dEBM-simple, The Cryosphere, DOI: doi.org/10.5194/tc-17-4571-2023
- Pelle, T., et al. (2023): Subglacial discharge accelerates future retreat of Denman and Scott Glaciers, East Antarctica, Science Advances, DOI: 10.1126/sciadv.adi9014
- Naughten, K.A., Holland, P.R. and De Rydt, J. (2023): Unavoidable future increase in West Antarctic ice-shelf melting over the twenty-first century, Nature Climate Change, DOI: doi.org/10.1126/sciadv.adi9014
- Schlemm, T., et al. (2023): Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet, The Cryosphere, DOI: doi.org/10.5194/tc-16-1979-2022
- Caillet, J., et al. (2023): Drivers and Reversibility of Abrupt Ocean State Transitions in the Amundsen Sea, Antarctica, JGR Oceans, DOI: doi.org/10.1029/2022JC018929
- Sun, S and Gudmundsson, G. H. (2023): The speedup of Pine Island Ice Shelf between 2017 and 2020: revaluating the importance of ice damage, Journal of glaciology, DOI: doi.org/10.1017/jog.2023.76
- Klose, A.K., et al. (2023): What do we mean, ‘tipping cascade’?, Environmental Research Letters, DOI: doi.org/10.1088/1748-9326/ac3955
- Zeitz, M., Reese, R., et al. (2023): Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple, The Cryosphere, DOI: doi.org/10.5194/tc-15-5739-2021
- Beckmann, J. and Winkelmann, R.. (2023): Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet, The Cryosphere, DOI: doi.org/10.5194/tc-17-3083-2023
- Hutchinson, K., et al. (2023): Improving Antarctic Bottom Water precursors in NEMO for climate applications, Geoscientific Model Development, DOI: doi.org/10.5194/gmd-16-3629-2023
- Winkelmann, R., et al. (2023): Social tipping processes towards climate action: A conceptual framework, Ecological Economics, DOI: doi.org/10.1016/j.ecolecon.2021.107242
- Reese, R., et al. (2023): The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded, The Cryosphere, 17, DOI: doi.org/10.5194/tc-17-3761-2023
- Hill, E. A., Urruty, B., Reese, R., et al. (2023): The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry, The Cryosphere, 17, DOI: doi.org/10.5194/tc-17-3739-2023
- Mevenkamp, H. et al. (2023): Reducing uncertainty of high-latitude ecosystem models through identification of key parameters, Environmental Research Letters, DOI: doi.org/10.1088/1748-9326/ace637
- Zhou et al. (2023): Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes. Nature Climate Change., DOI: doi.org/10.1038/s41558-023-01695-4
- Darelius, E. et al. (2023): Observational evidence for on-shelf heat transport driven by dense water export in the Weddell Sea. Nat Commun 14, 1022. https://doi.org/10.1038/s41467-023-36580-3
- Rosier, S. H. R. et al. (2023): Predicting ocean-induced ice-shelf melt rates using deep learning, The Cryosphere, 17, 499–518, DOI: doi.org/10.5194/tc-17-499-2023
- Burgard, C. et al. (2022): An assessment of basal melt parameterisations for Antarctic ice shelves, The Cryosphere, 16, 4931–4975, DOI: doi.org/10.5194/tc-16-4931-2022
- Jourdain, N. C. et al. (2022): Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century. Geophysical Research Letters, DOI: doi.org/10.1029/2022GL100629
- Meredith et al. (2022): Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica, Science Advances, 8, 47, DOI: 10.1126/sciadv.add0720.
- Nicola, L. et al. (2022) Money makes our world go round – funding landscape for polar early-career scientists in Germany. Polarforschung, 90, 81–84, DOI: doi.org/10.5194/polf-90-81-2022
- Armstrong McKay et al. (2022): Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377, DOI: doi.org/10.1126/science.abn7950
- Bradley et al. (2022): The influence of Pine Island Ice Shelf calving on basal melting. Journal of Geophysical Research: Oceans, 127. Doi: doi.org/10.1029/2022JC018621
-
Verfaillie et al. (2022): The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally varied melting. Commun, Earth Environ. 3. Doi: doi.org/10.1038/s43247-022-00458-x
-
Feldmann, J. et al. (2022): Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations. The Cryosphere, 16, 1927–1940. Doi: doi.org/10.5194/tc-16-1927-2022
- Hill, E. A. et al. (2021): Quantifying the potential future contribution to global mean sea level from the Filchner–Ronne basin, Antarctica. The Cryosphere, 15, 4675–4702. Doi: doi.org/10.5194/tc-15-4675-2021
- Kreuzer, M. et el. (2021): Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain. Geosci. Model Dev., 14, 3697–3714. Doi: doi.org/10.5194/gmd-14-3697-2021
- Chandler, D. and Langebroek, P. (2021): Southern Ocean sea surface temperature synthesis: Part 2. Penultimate glacial and last interglacial. Quaternary Science Reviews 271. Doi: doi.org/10.1016/j.quascirev.2021.107190
- Chandler, D. and Langebroek, P. (2021): Southern Ocean sea surface temperature synthesis: Part 1. Evaluation of temperature proxies at glacial-interglacial time scales. Quaternary Science Reviews 271. Doi: doi.org/ 10.1016/j.quascirev.2021.107191
- Wunderling N. et al. (2021): Interacting tipping elements increase risk of climate domino effects under global warming. Earth System Dynamics 12. doi.org/10.5194/esd-12-601-2021
- Janout M. et al. (2021): FRIS revisited in 2018: On the circulation and water masses at the Filchner and Ronne Ice Shelves in the southern Weddell Sea. JGR Oceans 126:6. Doi: doi.org/10.1029/2021JC017269
- Hattermann et al. (2021): Observed interannual changes beneath Filchner-Ronne Ice Shelf linked to large-scale atmospheric circulation. Nature Communications 12:2961. Doi: doi.org/10.1038/s41467-021-23131-x
- Edwards et al. (2021): Projected land ice contributions to twenty-first-century sea level rise. Nature 593. Doi: 10.1038/s41586-021-03302-y
- Rosier et al. (2021): The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. The Cryosphere 15/3. Doi: 10.5194/tc-15-1501-2021. SciTechDaily article
- Limpscomb et al. (2021): ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model. The Cryosphere 15/2. Doi: 10.5194/tc-15-633-2021
- Bull, C. Y. S. et al. (2021): Remote Control of Filchner‐Ronne Ice Shelf Melt Rates by the Antarctic Slope Current. Journal of Geophysical Research: Oceans. 126/2. Doi: 10.1029/2020jc016550
- De Rydt, J. et al. (2021): Drivers of Pine Island Glacier speed-up between 1996 and 2016. The Cryosphere 15/1. Doi: 10.5194/tc-15-113-2021
- Swingedouw, D. et al. (2020): Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems. Surveys in Geophysics. Doi: 10.1007/s10712-020-09604-6
- Reese, R. et al. (2020): The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model. The Cryosphere 14/9. Doi: 10.5194/tc-14-3097-2020
- Jourdain, N. C. et al. (2020): A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. The Cryosphere 14/9. Doi: 10.5194/tc-14-3111-2020
- Seroussi, H. et al. (2020): ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere 14/9. Doi: 10.5194/tc-14-3033-2020
- Garbe, J. et al. (2020): The hysteresis of the Antarctic Ice Sheet. Nature 585/7826. Doi: 10.1038/s41586-020-2727-5.
- Zeitz, M. et al. (2020): Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry. The Cryosphere 14/10. Doi: 10.5194/tc-14-3537-2020
- Gudmundsson, G. H. et al (2019): Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophysical Research Letters 46/23. Doi: 10.1029/2019gl085027